MODERN PROBABILISTIC MODELING FOR MASSIVE DATA

David M. Blei
Columbia University



Modern probabilistic modeling:
An efficient framework for discovering useful patterns in massive data.
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Population analysis of 2 billion genetic measurements
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Communities discovered in a 3.7M node network of U.S. Patents
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Game Life Film Book Wine
Season Know Movie Life Street
Team School Show Books Hotel
Coach Street Life Novel House
Play Man Television Story Room
Points Family Films Man Night
Games Says Director Author Place
Giants House Man House Restaurant
Second Children Story War Park
Players Night Says Children Garden
(6] o o o [0}
Bush Building Won Yankees Government
Campaign Street Team Game War
Clinton Square Second Mets Military
Republican Housing Race Season Officials
House House Round Run Irag
Party Buildings Cup League Forces
Democratic Development Open Baseball Iragi
Political Space Game Team Army.
Democrats Percent Play Games Troops
Senator Real Win Hit Soldiers
(1] @ ® (4 ®
Children Stock Church Art Police
School Percent War Museum Yesterday
Women Companies Women Show Man
Family Fund Life Gallery Officer
Parents Market Black Works Officers
Child Bank Political Artists Case
Life Investors Catholic Street Found
says Funds Government Artist Charged
Help Financial Jewish Paintings Street
Mother Business Pope Exhibition Shot

Topics found in 1.8M articles from the New York Times






Neuroscience analysis of 220 million fMRI measurements



The probabilistic modeling pipeline

Massive data

Make assumptions Discover patterns Predict & Explore
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Our perspective:

» This is a framework for customized data analysis, crucial to many fields.
» The pipeline separates assumptions, computation, application

> |t facilitates solving modern data science problems.



The probabilistic modeling pipeline
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Our goal:

» Develop modeling into a flexible, powerful and easy-to-use way
to solve real-world problems.



The probabilistic modeling pipeline

Massive data

Make assumptions Discover patterns Predict & Explore
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Our challenges:

» Develop new ways to build flexible models
» Develop algorithms that work on many problems and with massive data.

» Solve new problems in science, industry, and government
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Probabilistic topic models
Powerful and flexible algorithms for analyzing massive collections of text
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TOPIC MODELING

1. Discover the thematic structure
2. Annotate the documents

3. Use the annotations to visualize, organize, summarize, ...
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Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an[Organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the b
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s|Organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 venes. The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t
match precisely, those predictions

asic genes needed for life:

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.
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“are not all that far apart,” especially

comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just a generic
numbers game, particularly as more and

more genomes are completely mapped and
sequenced. “It may be a way of or
any newly sequenced genome,”
Arcady Mushegian, a computational mo-
lecular biologist at the National Center

\ for Biotechnology Information (NCBI)
| in Bethesda, Maryland. Comparing an
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explains
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Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

Documents exhibit multiple topics.

ADAPTED FROM NCBI



Topics

gene 0.04
dna 0.02
genetic 0.01
life 0.02

evolve 0.01
organism 0.01

\/

brain 0.04
neuron  0.02
nerve 0.01

\_/

data 0.02
number  0.02
computer 0.01
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Documents P
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Latent Dirichlet Allocation
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Latent Dirichlet Allocation



» Data: The OCR’ed collection of Science from 1990-2000

— 17K documents
— 11M words
— 20K unique terms (stop words and rare words removed)

> Model: 100-topic LDA model using variational inference.
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Topic Modeling

> LDA builds on decades of research about how to derive meaning from text.
> LDA more easily scales to massive data and generalizes to new data.

> LDA has had a big impact on many fields

Natural language processing
Computer vision

Recommendation systems

— Web search

— Computational biology and genetics
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> LDA is a simple building block that enables many applications.
» Each model solves a different problem, fuses different kinds of data.
» Models and their algorithms easily compose.
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Probabilistic inference
Given a model, use an algorithm to discover the hidden patterns in the data.




Massive data

Make assumptions Discover patterns Predict & Explore
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» Probabilistic inference is the main algorithmic & statistical problem.

» We square the modeling assumptions with the observed data.
E.g., which topics likely generated a collection of documents?

» We need scalable and generic inference.



I’l “\

INFER
LOCAL
STRUCTURE

UPDATE
GLOBAL
STRUCTURE

SUBSAMPLE
DATA

Stochastic variational inference scales to massive data.
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Population analysis of 2 billion genetic measurements




Communities discovered in a 3.7M node network of U.S. Patents



Neuroscience analysis of 220M fMRI measurements
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» Uses stochastic optimization (Robbins & Monro, 1951)
» Scales up 50 years of research in Bayesian modeling
» Though these are recent results, they have been adapted to many domains



Modern probabilistic modeling:
An efficient framework for discovering useful patterns in massive data.
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I. Assume our data come from a model with hidden patterns at work

Topic proportions and

Topics Documents X
assignments
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Il. Discover those patterns in the data

INFER UPDATE
LOCAL GLOBAL
STRUCTURE STRUCTURE
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DATA




Ill. Use the discovered patterns to predict about and explore the data




The probabilistic modeling pipeline

Our goal:

» Develop modeling into a flexible, powerful and easy-to-use way
to solve real-world problems.
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Models and applications

> genetic measurements

v

hierarchical topics in a corpus

v

changing preferences

> equations and text

v

newsworthy events in Twitter

Inference
> active subsampling
> averaged gradients

> annealing and inference

news consumption in a network

word meanings
counselor/patient dialogs
declassified cables from the 70s

neural readings in a fish

stochastic optimization
structured variational inference

probabilistic programming



We should seek out unfamiliar summaries of observational material, and establish
their useful properties... And still more novelty can come from finding, and evading,
still deeper lying constraints.

(John Tukey, The Future of Data Analysis, 1962)



